Time complexity : O(NlogN)
The above recurrence can be solved either using the Recurrence Tree method or the Master method.
/* C program for Merge Sort */
#include <stdio.h>
#include <stdlib.h>
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void
merge(
int
arr[],
int
l,
int
m,
int
r)
{
int
i, j, k;
int
n1 = m - l + 1;
int
n2 = r - m;
/* create temp arrays */
int
L[n1], R[n2];
/* Copy data to temp arrays L[] and R[] */
for
(i = 0; i < n1; i++)
L[i] = arr[l + i];
for
(j = 0; j < n2; j++)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays back into arr[l..r]*/
i = 0;
// Initial index of first subarray
j = 0;
// Initial index of second subarray
k = l;
// Initial index of merged subarray
while
(i < n1 && j < n2) {
if
(L[i] <= R[j]) {
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy the remaining elements of L[], if there
are any */
while
(i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy the remaining elements of R[], if there
are any */
while
(j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void
mergeSort(
int
arr[],
int
l,
int
r)
{
if
(l < r) {
// Same as (l+r)/2, but avoids overflow for
// large l and h
int
m = l + (r - l) / 2;
// Sort first and second halves
mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
/* UTILITY FUNCTIONS */
/* Function to print an array */
void
printArray(
int
A[],
int
size)
{
int
i;
for
(i = 0; i < size; i++)
printf
(
"%d "
, A[i]);
printf
(
"\n"
);
}
/* Driver code */
int
main()
{
int
arr[] = { 12, 11, 13, 5, 6, 7 };
int
arr_size =
sizeof
(arr) /
sizeof
(arr[0]);
printf
(
"Given array is \n"
);
printArray(arr, arr_size);
mergeSort(arr, 0, arr_size - 1);
printf
(
"\nSorted array is \n"
);
printArray(arr, arr_size);
return
0;
}