
Time complexity : O((n+b) * logb(k)).
Let there be d digits in input integers.
Radix Sort takes O(d*(n+b)) time where b is the base for representing numbers.
For example, for the decimal system, b is 10.
What is the value of d? If k is the maximum possible value, then d would be O(logb(k)).
So overall time complexity is O((n+b) * logb(k)).
// Radix sort Java implementation import java.io.*;import java.util.*; class Radix { // A utility function to get maximum value in arr[] static int getMax(int arr[], int n) { int mx = arr[0]; for (int i = 1; i < n; i++) if (arr[i] > mx) mx = arr[i]; return mx; } // A function to do counting sort of arr[] according to // the digit represented by exp. static void countSort(int arr[], int n, int exp) { int output[] = new int[n]; // output array int i; int count[] = new int[10]; Arrays.fill(count, 0); // Store count of occurrences in count[] for (i = 0; i < n; i++) count[(arr[i] / exp) % 10]++; // Change count[i] so that count[i] now contains // actual position of this digit in output[] for (i = 1; i < 10; i++) count[i] += count[i - 1]; // Build the output array for (i = n - 1; i >= 0; i--) { output[count[(arr[i] / exp) % 10] - 1] = arr[i]; count[(arr[i] / exp) % 10]--; } // Copy the output array to arr[], so that arr[] now // contains sorted numbers according to current // digit for (i = 0; i < n; i++) arr[i] = output[i]; } // The main function to that sorts arr[] of // size n using Radix Sort static void radixsort(int arr[], int n) { // Find the maximum number to know number of digits int m = getMax(arr, n); // Do counting sort for every digit. Note that // instead of passing digit number, exp is passed. // exp is 10^i where i is current digit number for (int exp = 1; m / exp > 0; exp *= 10) countSort(arr, n, exp); } // A utility function to print an array static void print(int arr[], int n) { for (int i = 0; i < n; i++) System.out.print(arr[i] + " "); } // Main driver method public static void main(String[] args) { int arr[] = { 170, 45, 75, 90, 802, 24, 2, 66 }; int n = arr.length; // Function Call radixsort(arr, n); print(arr, n); }}